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1 Introduction

It is quite common to use economic variables in logarithms (logs) in eco-
nomic models. Also vector autoregressions (VARs) are often constructed
for the logs of variables. There are a number of justifications for using logs
rather than the original variables. For example, the statistical properties of
the model fitted to the logs may be preferable to those of a model for the
original variables. In particular, the residuals of a model for logs may have a
more homogeneous variance or they may even be well described by a normal
distribution. Furthermore, growth rates of economic variables are often of
primary interest. Approximating the growth rates by changes in the logs of
a variable is common practice. Hence, the log transformation is natural for
many economic variables.

Since time series models are used for forecasting and sometimes forecasts
of the original variables are of interest, an obvious question is how to obtain
such a forecast from a forecast for the log of the variable. Although it is
tempting to use the exponential of the forecast of the log variable, a classical
result by Granger and Newbold (1976) for univariate models states that such
a “naive” forecast is generally not optimal. This result was extended by Ariño
and Franses (2000) to VAR models. In fact, these authors derive the optimal
forecast for Gaussian VAR models and argue that in practice sizable gains
are possible in forecast accuracy from using the optimal forecast.

In this study we reconsider this finding by first deriving a somewhat
more compact expression for the optimal forecast and, second, investigating
possible gains in forecast precision to be expected from using it. Having a
more transparent expression of the optimal forecasting formula enables us
to see more easily that for typical economic variables gains in the forecast
precision from using the optimal rather than the naive forecast are not likely
to be substantial. In fact, in practice the optimal forecast may well be inferior
to the naive forecast. This result is fully in line with findings by Lütkepohl
and Xu (2011) who compared different univariate forecasts and found that
the naive forecast may be superior to the optimal forecast when specification
and estimation uncertainty are taken into account. We use Monte Carlo
simulations to demonstrate that for variables which have typical features
of some economic variables, using the optimal forecast is likely to result in
efficiency losses if the forecast precision is measured by the root mean square
error (RMSE). We also reconsider the example used by Ariño and Franses
(2000) and demonstrate that under our criteria gains in forecast precision
may be obtained by using the naive rather than the optimal forecast. Our
overall conclusion is that the common practice of forecasting the logs of
a variable and getting a forecast for the original variable by applying the
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exponential function is a useful strategy in practice.
Our study is structured as follows. In the next section a transparent

expression of the optimal forecast of the level of a variable which enters a
VAR in logs is derived. In Section 3 the results of a simulation experiment
are reported which compares the naive and the optimal forecast. Empirical
forecast comparisons based on economic data are discussed in Section 4 and
Section 5 concludes.

2 Forecasts of Levels of log Transformed Vari-

ables

Suppose xt = (x1t, . . . , xKt)
′ is a K-dimensional VAR process of order p

(VAR(p)),

xt = ν + A1xt−1 + · · ·+ Apxt−p + ut, (1)

where ut ∼ N (0,Σu) is Gaussian white noise. By successive substitution we
can write

xt+h = ν(h)+A
(h)
1 xt+ · · ·+A(h)

p xt+1−p+ut+h+Φ1ut+h−1+ · · ·+Φh−1ut+1,

where ν(h) and the A
(h)
i ’s are functions of the original VAR parameters and

Φi =

min(i,p)∑
j=1

Φi−jAj

can be computed recursively for i = 1, 2, . . . , with Φ0 = IK (e.g., Lütkepohl
(2005, Chapter 2)).

Denoting by Et the conditional expectation operator, given information
up to time t, the optimal (minimum mean square error (MSE)) h-step ahead
forecast of xt at origin t is

Et(xt+h) ≡ xt+h|t = ν(h) + A
(h)
1 xt + · · ·+ A(h)

p xt+1−p.

In other words, xt+h = xt+h|t + u
(h)
t , where u

(h)
t = ut+h + Φ1ut+h−1 + · · · +

Φh−1ut+1 is the forecast error with mean zero and covariance matrix

Σx(h) =
h−1∑
i=0

ΦiΣuΦ
′
i, (2)
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that is,

u
(h)
t ∼ N (0,Σx(h)). (3)

Now suppose that the k-th component is the log of a variable yt, i.e.,
xkt = log yt, and forecasts of yt are desired. A naive h-step ahead forecast
for yt+h may be based on xk,t+h|t, the k-th component of xt+h|t, as follows:

ynait+h|t = exp(xk,t+h|t). (4)

Granger and Newbold (1976) call this forecast naive because it is biased and
it is not the optimal forecast. Using that

E(expx) = exp(µ+ 1
2
σ2
x),

if x ∼ N (µ, σ2
x), it follows from the normality of the forecast error in (3) that

Et(yt+h) = Et[exp(xk,t+h|t + u
(h)
kt )] = exp(xk,t+h|t)Et(expu

(h)
kt )

= exp(xk,t+h|t +
1
2
σ2
kk(h)),

where σ2
kk(h) is the k-th diagonal element of Σx(h). Thus, the optimal pre-

dictor for yt+h is

yoptt+h|t = exp(xt+h|t +
1
2
σ2
kk(h)). (5)

Hence, the optimal forecast differs from the naive forecast by a multiplicative
adjustment factor exp(1

2
σ2
kk(h)).

More generally, if a subvector of xt consists of variables in logs and a
product or ratio of the corresponding original variables, say zt = exp(c′xt),
is of interest, where c is a suitable (K × 1) vector, a forecast of the relevant
linear combination c′xt may be obtained and transformed. In that case, the
naive forecast would be znait+h|t = exp(c′xt+h|t) and the corresponding optimal
forecast becomes

zoptt+h|t = exp(c′xt+h|t +
1
2
c′Σx(h)c). (6)

In economic models the residual variance of an equation for the log of
a variable is typically small relative to the level of the variable. Moreover,
the forecast error variance of the optimal forecast for the log of a stationary
variable is bounded by the variance of the log of the variable when the forecast
horizon goes to infinity. Therefore, for stationary economic variables the
adjustment factor for the optimal forecast is typically small. It is worth
emphasizing, however, that the derivations of the optimal forecast do not
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require stationarity of the process xt. Hence, integrated and cointegrated
VARs are also permitted. If integrated processes are involved, the forecast
error variance may be unbounded when h → ∞. Thus, the adjustment factor
may have a substantial impact on the optimal forecast for large forecast
horizons.

In the simulations and the example section we assume that forecasting
the ratio of the first two components of a vector yt is of interest, that is, zt =
y1t/y2t. The log of the ratio is a cointegration relation in the data generation
process (DGP) of xt used in the simulations. In that case, the adjustment
factor in (6) is bounded although x1t and x2t are integrated processes. Even
for long-term forecasts the adjustment factor for the optimal forecast of zt
will hence be small.

In practice it is not clear that generally improvements in forecast precision
can be obtained by using the optimal predictor. Notice that the adjustment
factor relies on the normality of the forecast error which may not be satisfied.
Moreover, the parameters and forecasts have to be replaced by estimated
quantities which can make a difference, in particular, because the adjustment
factor also has to be estimated. Estimation errors may have a small impact
if stationary variables are considered and, hence, the adjustment factor for
the optimal forecast is small. The situation may be different, however, for
integrated variables. For them estimation errors in the forecast error variance
may in fact be substantial. To see this, consider a univariate AR(1) process,
xt = ν + αxt−1 + ut. For this process Φi = αi. Hence, from (2) the h-step
forecast error variance is seen to be σ2

u(1+α2+ · · ·+α2(h−1)), where σ2
u is the

variance of ut. If |α| < 1 and, hence, the process is stationary, the powers
of α go to zero. However, if α = 1 and the process is a random walk, the
estimated α may well be greater than one and, hence, substantial estimation
errors may accumulate in the estimated forecast error variance based on such
an estimate.

In the next section the relative performance of the naive and the optimal
forecasts is explored under ideal conditions in a simulation environment to
obtain a better impression of the possible gains or losses in forecast precision.
In the light of these results we reconsider the example system used by Ariño
and Franses (2000) in Section 4.

3 Monte Carlo Comparison of Forecasts

We simulate a 3-dimensional VAR(1) process,

xt = ν + A1xt−1 + ut, (7)
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where ut ∼ N (0,Σu). We define yt to be a 3-dimensional process consisting
of the exponentials of the components of xt, that is, yit = expxit, i = 1, 2, 3,
and compute RMSEs of ynait+h|t and yoptt+h|t, varying the forecast horizon h =
1, . . . , 16.

The VAR has the vector equilibrium or error correction model (VECM)
representation ∆x1t

∆x2t

∆x3t

 =

 ν1
ν2
ν3

−

 α11 0
0 0
0 α32

(
1 β12 β13

0 0 1

) x1,t−1

x2,t−1

x3,t−1

+ut, (8)

highlighting the different time series properties of the variables: x1t is coin-
tegrated with x2t, which is a random walk, while x3t is a stationary process.
Thus, the cointegration rank is two. Since the adjustment factor 1

2
σ2
kk(h)

involves the residual variances, the elements of Σu may be of importance
for the relative precision of the two forecasts. To isolate this factor across
variables, we let Σu = σ2I3, implying

Σx(h) = σ2

h−1∑
i=0

ΦiΦ
′
i,

and vary σ2 = 0.001, 0.01, 0.02, 0.05. The remaining parameters are fixed
as νi = 0.02, α11 = 0.1, α32 = 0.5, β12 = −1, and β13 = 0.1.2 In particular,
x1t − x2t is a cointegration relation.

We use an effective sample size of 100 observations, discarding the 50
first to reduce start-up effects, and run 10,000 replications of the experi-
ment. In each replication the lag length p is chosen by means of Schwarz’s
Bayesian Information Criterion (BIC) (Schwarz (1978)), the cointegration
rank is tested with Johansen’s likelihood ratio trace tests (Johansen (1995))
and the VECM with the corresponding number of cointegrated vectors is
estimated by Johansen’s reduced rank regression. We are interested in fore-
casts of yit = exp(xit), i = 1, 2, 3. The estimated forecasts are based on (4)
and (5), where all unknown parameters are replaced by estimates.

Since in a forecasting situation we are often also interested in functions
of the modelled variables, we also compute forecasts of the ratio zt ≡ y1t/y2t,
which in our case corresponds to the cointegrated stationary combination of
xt variables. We consider forecasts znait+h|t = ynai1,t+h|t/y

nai
2,t+h|t and zoptt+h|t obtained

from (6). Finally, to investigate the impact of specification and estimation
on the performance of optimal forecasts, we also compute forecasts based on
the true parameters.

2We also investigated the case of νi = 0, but the results were qualitatively unaltered.
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We first investigate the impact of specification and estimation variability
on the optimal forecast. A comparison of optimal forecasts based on true and
estimated parameters is summarized in Figure 1 which plots the RMSEs of
the optimal forecasts based on true parameters relative to estimated optimal
forecasts as a function of the forecast horizon with four different variances
of the shocks to the processes. Notice that also specification uncertainty en-
ters the estimated forecasts because the model order and the cointegration
rank are data based while the true order and cointegration rank are used
when true parameters are considered. Four conclusions emerge. First, the
loss of forecasting precision due to estimation is negligible for the stationary
variable y3t. Second, for the nonstationary, integrated variables y1t and y2t,
the negative effects of estimation have an increasingly negative impact on
the forecast precision with increasing forecast horizon. Third, the larger the
error variance (σ2), the more negative is the effect of estimation on the per-
formance of optimal forecasts. Finally, even though cointegration is imposed,
estimation has an increasingly negative effect with growing horizon on the
forecasts of the ratio, as shown for zoptt+h|t, denoted by z in Figure 1.

[Figure 1 about here.]

All these results are fully in line with what was to be expected by eval-
uating the optimal forecasting formula with the possible exception of the
fourth observation. As mentioned in the previous section, the forecast error
variance of a stationary variable is bounded and small relative to the level of
the variable for our DGP. Therefore the estimation errors are also relatively
small. This feature is in line with properties of economic variables in logs.
In contrast, the forecast error variances for the integrated variables grow
with the forecast horizon and are unbounded. Here estimation errors may
grow with the forecast horizon, as mentioned in Section 2. Given that the
cointegration relation is stationary, one may wonder why estimation errors
become so important for the optimal forecast of zt. These results reflect the
fact that we use an estimated rather than true cointegration rank. In our
DGP the cointegration relation is not very strong. The loading coefficient
α11 = 0.1 which is a speed of adjustment coefficient often found in empirical
studies. On the other hand, the cointegration rank tests are known to have
low power. Note that the implied A1 matrix of our DGP with α11 = 0.1 is

A1 =

 0.9 0.1 −0.01
0 1.0 0
0 0 0.5

 .

Its characteristic roots are 1.0, 0.9 and 0.5 and the true cointegration rank is
two (one genuine cointegration relation and one stationary variable). Given
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the low power of the cointegration rank tests, underestimation of the cointe-
gration rank is quite likely which may lead to substantial estimation errors
in the forecast error variance of the genuine cointegration relation. These
estimation and specification errors are reflected in Figure 1.

[Figure 2 about here.]

With these conclusions in mind, we next turn to the relative performance
of estimated naive to estimated optimal forecasts. The results are summa-
rized in Figure 2 which plots the RMSEs of estimated naive forecasts relative
to estimated optimal forecasts as a function of the forecast horizon with the
same four different variances of the shocks to the processes as before. Five
conclusions emerge. First, for the stationary variable there are no gains from
using optimal forecasts at any forecast horizon. Second, for integrated vari-
ables, the naive forecasts generally perform better than optimal forecasts,
the relative gains increasing with the forecast horizon. Third, in general,
the worse the fit of the equations, the better are the naive relative to the
estimated optimal forecasts. Fourth, the performance of the forecasts of the
random walk y2t have some benefits of optimal forecasting for shorter hori-
zons. Fifth, for the stationary function of integrated variables, zt, the naive
forecasts are clearly superior to the optimal forecasts and the gain in forecast
precision increases with the forecast horizon and the residual variance.

These results are not surprising, given the impact of the estimation error
on the optimal forecast. Since the correction factor used in the optimal
forecast is small, as usual for economic variables, the naive and optimal
forecasts based on true parameters do not differ much. Hence, the rather
substantial specification and estimation error in the optimal forecast for the
integrated variables y1t and y2t as well as for the ratio zt becomes important
and affects the optimal forecasts negatively in particular for large forecast
horizons.

The conclusions that emerge from this Monte Carlo study are that, in
general, there are no gains from optimal forecasts relative to naive forecasts
at any horizon—with the possible exception when forecasting integrated vari-
ables at short horizons. The next question is therefore whether these results
from stylized data generating processes carry over when applied to real data
and how they can be aligned with the substantial improvements obtained by
Ariño and Franses (2000) from using the optimal forecast.
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4 Empirical Example

To investigate the importance of optimal forecasts compared to naive fore-
casts for real data, we reexamine the example used by Ariño and Franses
(2000). The data are quarterly U.S. series of real investment (y1t) and real
gross national product (GNP) (y2t) for the period 1947(1)–1988(1).3 Using
data until 1980(4), Ariño and Franses (2000) find that the data are well rep-
resented by a VAR(3) in logs with one cointegration relation. The data are
shown in Figure 3. Ariño and Franses (2000) estimate one pair of naive and
optimal forecasts for each h = 1, . . . , 29 and evaluate them by taking aver-
ages of various error measures over h horizons, so, for example, the RMSE is
computed as

RMSEAF =

√√√√ 1

29

29∑
h=1

(
yt+h − ft+h|t

)2
,

where ft+h|t = ynait+h|t or y
opt
t+h|t.

[Figure 3 about here.]

To investigate the forecasting properties as a function of the forecast-
ing horizon, we choose a different strategy. Starting with a sample of 100
observations, the forecasts ft+h|t, h = 1, . . . , 16, are computed recursively,
increasing the sample by one period and redoing the estimation and fore-
casting over an evaluation period of 65 quarters at the end of the sample.
The RMSE at forecast horizon h is then computed as

RMSE (h) =

√√√√ 1

66− h

66−h∑
i=1

(
yt+i+h − ft+i+h|t+i

)2
, h = 1, . . . , 16, (9)

with ft+h|t = ynait+h|t or yoptt+h|t, as before. The system is reestimated for each
sample size and, as in the Monte Carlo, the lag length p is chosen by means
of the BIC, the cointegration rank is tested and the system is estimated
by reduced rank regression with the corresponding number of cointegration
vectors. The estimated forecasts are based on (4) and (5), replacing unknown
parameters by estimates. We also compute forecasts of the investment-GNP
ratio, zt ≡ y1t/y2t.

3The data set corresponds to Table 13.5 in Pindyck and Rubinfeld (1998), but
with the series starting in 1947. The data are available at http://www.estima.com/

textbookindex.shtml.
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[Figure 4 about here.]

We present the ratio of RMSEs of naive to optimal forecasts for the
estimated models as a function of the forecast horizon in Figure 4. The
following results are apparent: First, for the seemingly stationary variable
zt, there are no or at best very small gains of using optimal forecasts at any
forecast horizon. Second, for the integrated variables y1t and y2t, the relative
performance of the naive forecasts improves with the forecast horizon. They
generally perform better than optimal forecasts except for short horizons
where both have very similar RMSEs. Hence, the results of the example
model mimic those from the Monte Carlo study. Thus, the gains from using
the optimal forecast reported by Ariño and Franses (2000) are an artefact of
their specific way to compute RMSEs.

5 Conclusions

In this study we have considered forecasting levels variables which appear in
logs in a VAR or VECM. Theory asserts that forecasting the log variable and
then converting it to a ‘naive’ forecast of the original variable by applying
the exponential function is not optimal. We have derived a simple expression
for the optimal forecast which has enabled us to investigate possible factors
which may lead to gains from using the optimal forecast. We have found that
for typical economic variables substantial RMSE gains cannot be expected
even theoretically from using the optimal forecast.

The situation is even worse in practice where forecasts have to be based
on processes which are specified and estimated from data. In a controlled
simulation experiment we have shown that in this case the optimal forecast
will rarely result in RMSE reductions relative to the naive forecast. In fact,
for stationary variables, including transformations based on cointegration re-
lations no gains can be expected from using the optimal forecast when speci-
fication and estimation errors are accounted for. For integrated variables we
found small improvements from using the optimal forecast for short horizons
whereas substantial losses may occur at longer horizons. These features are
also obtained for an example based on quarterly U.S. investment and GNP
data. Our results suggest that in applied work using the naive forecast is the
preferred option.
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Figure 1: RMSEs of true optimal relative to estimated optimal h-step fore-
casts for yt and zt = y1t/y2t with deterministic terms νi = 0.02, varying the
covariance matrix of the residuals.
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Figure 2: RMSEs of estimated naive relative to estimated optimal h-step
forecasts for yt and zt = y1t/y2t with νi = 0.02, varying the covariance matrix
of the residuals.
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Figure 3: Levels (yi) of U.S. real investment (i = 1) and real GNP (i = 2)
and the investment/GDP ratio (z).
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Figure 4: RMSEs of naive relative to estimated optimal h-step forecasts for
y1, y2 and z ≡ y1/y2, h = 1, . . . , 16 for the U.S. data.
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